Os anagramas são alterações da sequência das letras de uma palavra. Na Matemática, por meio da permutação, é possível descobrir quantas combinações uma palavra pode ter.
As permutações são agrupamentos formados pelos mesmos elementos, por isso diferem entre si somente pela ordem dos mesmos.
Por exemplo, se C = (2, 3, 4), as permutações simples de seus elementos são: 234, 243, 324, 342, 423 e 432.
Indicamos o número de Permutações simples de n elementos distintos por Pn = n!
Exemplo 1
Quais os anagramas da palavra AMOR?
Um anagrama formado com A, M, O, R corresponde a qualquer permutação dessas letras, de modo a formar ou não palavras.
Temos 4 possibilidades para a primeira posição, 3 possibilidades para a segunda posição, 2 possibilidades para a 3 posição e 1 possibilidade para a quarta posição.
Pelo princípio fundamental da contagem temos 4 * 3 * 2 * 1 = 24 possibilidades ou 24 anagramas.
Alguns anagramas: ROMA, AMRO, MARO, ARMO, MORA . . .
Exemplo 2
Formar os anagramas a partir da palavra PATO
Pelo Princípio Fundamental da Contagem podemos dizer que é possível formar 24 sequências.
P4 = 4! = 4 * 3 * 2 * 1 = 24
PATO PAOT POTA POAT PTOA PTAO
APTO APOT ATPO ATOP AOTP AOPT
TAPO TAOP TOPA TOAP TPAO TPOA
OAPT OATP OPTA OPAT OTPA OTAP
Exemplo 3
Carlos e Rose têm três filhos: Sérgio, Adriano e Fabíola. Eles querem tirar uma foto de recordação na qual todos apareçam lado a lado. Quantas fotos diferentes podem ser registradas?
A forma como irão se distribuir corresponde a uma permutação entre eles, então:
P5 = 5! = 5 * 4 * 3 * 2 * 1 = 120 formas distintas.
Por exemplo, se C = (2, 3, 4), as permutações simples de seus elementos são: 234, 243, 324, 342, 423 e 432.
Indicamos o número de Permutações simples de n elementos distintos por Pn = n!
Exemplo 1
Quais os anagramas da palavra AMOR?
Um anagrama formado com A, M, O, R corresponde a qualquer permutação dessas letras, de modo a formar ou não palavras.
Temos 4 possibilidades para a primeira posição, 3 possibilidades para a segunda posição, 2 possibilidades para a 3 posição e 1 possibilidade para a quarta posição.
Pelo princípio fundamental da contagem temos 4 * 3 * 2 * 1 = 24 possibilidades ou 24 anagramas.
Alguns anagramas: ROMA, AMRO, MARO, ARMO, MORA . . .
Exemplo 2
Formar os anagramas a partir da palavra PATO
Pelo Princípio Fundamental da Contagem podemos dizer que é possível formar 24 sequências.
P4 = 4! = 4 * 3 * 2 * 1 = 24
PATO PAOT POTA POAT PTOA PTAO
APTO APOT ATPO ATOP AOTP AOPT
TAPO TAOP TOPA TOAP TPAO TPOA
OAPT OATP OPTA OPAT OTPA OTAP
Exemplo 3
Carlos e Rose têm três filhos: Sérgio, Adriano e Fabíola. Eles querem tirar uma foto de recordação na qual todos apareçam lado a lado. Quantas fotos diferentes podem ser registradas?
A forma como irão se distribuir corresponde a uma permutação entre eles, então:
P5 = 5! = 5 * 4 * 3 * 2 * 1 = 120 formas distintas.
Por Marcos Noé
Graduado em Matemática
Graduado em Matemática